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1 Introduction to Probability

Definition 1 A probability space is a triple (Ω,F , P ) where Ω is a set of objects called
the sample space, F is a family of subsets of Ω called events, and the probability measure
P : F → [0, 1].

One key assumption we make is that F is a σ-algebra containing Ω, meaning that
countably many complements, unions, and intersections of events in F are also
events in F . The probability measure P must obey Kolmogorov’s Axioms.

1. ∀A ∈ F , P (A) ≥ 0

2. P (Ω) = 1

3. If A1, A2, · · · ∈ F and ∀i 6= j, Ai
⋂
Aj = ∅, then P

(⋃
i≥1Ai

)
=
∑

i≥1 P (Ai)

We choose Ω and F to model problems in a way that makes our calculations easy.

Theorem 1
P (Ac) = 1− P (A)

Theorem 2 (Inclusion-Exclusion Principle)

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1

( ∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩ Aik)

)

Theorem 3 (Law of Total Probability) If A1, A2, · · · partition Ω (i.e Ai are disjoint
and ∪Ai = Ω), then for event B,

P (B) =
∑
i

P (B ∩ Ai)

1.1 Conditional Probability

Definition 2 If B is an event with P (B) > 0, then the conditional probability of A given
B is

P (A|B) =
P (A ∩B)

P (B)
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Intuitively, conditional probabilty is the probability of event A given that event B
has occurred. In terms of probability spaces, it is as if we have taken (Ω,F , P ) and
now have a probabilty measure P (·|C) belonging to the space (Ω,F , P (·|C)).

Theorem 4 (Bayes Theorem)

P (A|B) =
P (B|A)P (A)

P (B)

1.2 Independence

Definition 3 Events A and B are independent if P (A ∩B) = P (A)P (B)

If P (B) > 0, then A,B are independent if and only if P (A|B) = P (A). In other
words, knowing B occurred gave no extra information about A.

Definition 4 If A,B,C with P (C) > 0 satisfy P (A ∩ B|C) = P (A|C)P (B|C), then A
and B are conditionally independent given C.

Conditional independence is a special case of independence whereA andB are not
necessarily independent in the original probability space which has the measure
P , but are independent in the new probability space conditioned on C with the
measure P (·|C).

2 Random Variables and their Distributions

Definition 5 A random variable is a function X : Ω → R with the property ∀α ∈
R, {ω ∈ Ω : X(ω) ≤ α} ∈ F .

The condition in definition 5 is necessary to compute P (X ≤ α), ∀α ∈ R. This
requirement also let us compute P (X ∈ B) for most sets by leveraging the fact that
F is closed under complements, unions, and intersections. For example, we can
also compute P (X > α) and P (α < X ≤ β). In this sense, the property binds the
probability space to the random variable.

definition 5 also implies that random variables satisfy particular algebraic proper-
ties. For example, ifX, Y are random variables, then so areX+Y,XY,Xp, limn→∞Xn,
etc.

Definition 6 A discrete random variable is a random variable whose codomain is count-
able.
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Definition 7 A continuous random variable is a random variable whose codomain is the
real numbers.

Although random variables are defined based on a probability space, it is of-
ten most natural to model problems without explicitly specifying the probability
space. This works so long as we specify the random variables and their distribu-
tion in a “consistent” way. This is formalized by the so-called Kolmogorov Exten-
sion Theorem but can largely be ignored.

2.1 Distributions

Roughly speaking, the distribution of a random variable gives an idea of the like-
lihood that a random variable takes a particular value or set of values.

Definition 8 The probability mass function (or distribution) of a discrete random variable
X is the frequency with which X takes on different values.

pX : X → [0, 1] where X = range(X), pX(x) = Pr {X = x} .

Note that
∑

x∈X pX(x) = 1 since
⋂
x∈X{w : X(w) = x} = Ω.

Continuous random variables are largely similar to discrete random variables. One
key difference is that instead of being described by a probability “mass”, they are
instead described by a probability “density”.

Definition 9 The probability density function (distribution) of a continuous random vari-
able describes the density by which a random variable takes a particular value.

fX : R→ [0,∞) where
∫ ∞
−∞

fX(x)dx = 1 and Pr {X ∈ B} =

∫
B

fX(x)dx

Observe that if a random variableX is continuous, then the probability that it takes
on a particular value is zero.

Pr {X = x} = lim
δ→0

Pr {x ≤ X ≤ x+ δ} = lim
δ→0

∫ x+δ

x

fX(u)du =

∫ x

x

fX(u)du = 0

Definition 10 The cumulative distribution function (CDF) gives us the probability of a
random variable X being less than or equal to a particular value.

FX : R→ [0, 1], FX(x) = Pr {X ≤ x}
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Note that by the Kolomogorov axioms, FX must satisfy three properties:

1. FX is non-decreasing.

2. limx→0 FX(x) = 0 and limx→∞ FX(x) = 1.

3. FX is right continuous.

It turns out that if we have any function FX that satisfies these three properties,
then it is the CDF of some random variable on some probability space. Note that
FX(x) gives us an alternative way to define continuous random variables. If FX(x)
is absolutely continuous, then it can be expressed as

FX(x) =

∫ x

−∞
fX(x)dx

for some non-negative function fX(x), and this is the PDF of a continuous random
variable.

Often, when modeling problems, there are multiple random variables that we
want to keep track of.

Definition 11 IfX and Y are random variables on a common probability space (Ω,F , P ),
then the joint distribution (denoted pXY (x, y) or fXY (x, y) describes the frequencies of
joint outcomes.

Note that it is possible for X to be continuous and Y to be discrete (or vice versa).

Definition 12 The marginal distribution of a joint distribution is the distribution of a
single random variable.

pX(x) =
∑
y

pXY (x, Y = y), fX(x) =

∫ ∞
−∞

fXY (x, y)dy

Definition 13 Two random variables X and Y are independent if their joint distribution
is the product of the marginal distributions.

Just like independence, we can extend the notion of conditional probability to ran-
dom variables.

Definition 14 The conditional distribution of X given Y captures the frequencies of X
given we know the value of Y .

pX|Y (x|y) =
PXY (x, y)

pY (y)
, fX|Y (x|y) =

fXY (x, y)

fY (y)
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Often, we need to combine or transform several random variables. A derived dis-
tribution is the obtained by arithmetic of several random variables or applying
a function to several (or many) random variables. Since the CDF of a distribu-
tion essentially defines that random variable, it can often be easiest to work back-
wards from the CDF to the PDF or PMF. In the special case where we want to find
Y = g(X) for a function g.

Fy(y) = Pr {Y ≤ y} = Pr {g(x) ≤ y} = Pr
{
X ∈ g−1([−∞, y])

}
, g−1(y) = {x : g(x) = y}.

Another special case of a derived distribution is when adding random variables
together.

Theorem 5 The resulting distribution of a sum of two independent random variables is
the convolution of the distributions of the two random variables.

pX+Y (z) =
∞∑

k=−∞

pX(k)pY (z − k), fX+Y (z) =

∫ ∞
−∞

fX(x)fY (z − x)dx

2.2 Properties of Distributions

2.2.1 Expectation

Definition 15 The expectation of a random variable describes the center of a distribution,

E [X] =
∑
x∈X

xpX(x), E [X] =

∫ ∞
−∞

xfX(x)dx

provided the sum or integral converges.

Expectation has several useful properties. If we want to compute the expectation
of a function of a random variable, then we can use the law of the unconscious
statisitician.

Theorem 6 (Law of the Unconscious Statistician)

E [g(X)] =
∑
x∈X

g(x)pX(x), E [g(X)] =

∫ ∞
−∞

g(x)fX(x)dx

Another useful property is its linearity.

E [aX + bY ] = aE [X] + bE [Y ] , ∀a, b ∈ R.

Sometimes it can be difficult to compute expectations directly. For disrete distribu-
tions, we can use the tail-sum formula.
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Theorem 7 (Tail Sum) For a non-negative integer random variable,

E [X] =
∞∑
k=1

Pr {X ≥ k} .

When two random variables are independent, expectation has some additional
properties.

Theorem 8 If X and Y are independent, then

E [XY ] = E [X]E [Y ] .

Earlier, we saw that we find a derived distribution by transforming and combining
random variables. Sometimes, we don’t need to actually compute the distribution,
but only some of its properties.

Definition 16 The nth moment of a random variable is E [Xn].

It turns out that we can encode the moments of a distribution into the coefficients
of a special power series.

Definition 17 The moment generating function of a random variableX is given byMX(t) =
E
[
etX
]
.

Notice that if we apply the power series expansion of etX , we see that

MX(t) =
∞∑
n=0

t!

n!
E [Xn] .

Thus the nth moment is encoded in the coefficients of the power series and we can
retrieve them by taking a derivative:

E [Xn] =
dn

dtn
MX(t).

Another interesting point to notice is that for a continuous random variable

MX(t) =

∫ ∞
−∞

fX(x)etxdx

is the Laplace transform of the distribution over the real line, and for a discrete
random variable,

MX(t) =
∞∑

x=−∞

pX(x)etx

is the Z-transform of the distribution evaluated along the curve at e−t.
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Theorem 9 If the MGF of a function exists, then it uniquely determines the distribution.

This provides another way to compute the distribution for a sum of random vari-
ables because we can just multiply their MGF.

2.2.2 Variance

Definition 18 The variance of a discrete random variable X describes its spread around
the expectation and is given by

V ar (X) = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 .

Theorem 10 When two random variables X and Y are independent, then

V ar (X + Y ) = V ar (X) + V ar (Y ) .

Definition 19 The covariance of two random variables describes how much they depend
on each other and is given by

Cov (X, Y ) = E [(X − E [X])(Y − E [Y ])] = E [XY ]− E [X]E [Y ] .

If Cov (X, Y ) = 0 then X and Y are uncorrelated.

Definition 20 The correlation coefficient gives a single number which describes how ran-
dom variables are correlated.

ρ(X, Y ) =
Cov (X, Y )√

V ar (X)
√
V ar (Y )

.

Note that −1 ≤ ρ ≤ 1.
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2.3 Common Discrete Distributions

Definition 21 X is uniformly distributed when each value of X has equal probability.

X ∼ Uniform({1, 2, · · · , n}) =⇒ pX(x) =

{
1
n

x = 1, 2, · · · , n,
0 else.

Definition 22 X is a Bernoulli random variable if it is either 0 or 1 with pX(1) = p.

X ∼ Bernoulli(p) =⇒ pX(x) =


1− p x = 0,

p x = 1,

0 else.

E [X] = p V ar (X) = (1− p)p

Bernoulli random variables are good for modeling things like a coin flip where
there is a probability of success. Bernoulli random variables are frequently used as
indicator random variables 1A where

1A =

{
1 if A occurs,
0 else.

When paired with the linearity of expectation, this can be a powerful method of
computing the expectation of something.

Definition 23 X is a Binomial random variable when

X ∼ Binomial(n, p) =⇒ pX(x) =

{(
n
x

)
px(1− p)n−x x = 0, 1, · · · , n

0 else.

E [X] = np V ar (X) = np(1− p)

A binomial random variable can be thought of as the number of successes in n
trials. In other words,

X ∼ Binomial(n, p) =⇒ X =
n∑
i=1

Xi, Xi ∼ Bernoulli(p).

By construction, if X ∼ Binomial(n, p) and Y ∼ Binomial(m, p) are independent,
then X + Y ∼ Binomial(m+ n, p).
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Definition 24 A Geometric random variable is distributed as

X ∼ Geom(p) =⇒ pX(x) =

{
p(1− p)x−1 x = 1, 2, · · ·
0 else.

E [X] =
1

p
V ar (X) =

1− p
p2

Geometric random variables are useful for modeling the number of trials required
before the first success. In other words,

X ∼ Geom(p) =⇒ X = min{k ≥ 1 : Xk = 1}where Xi ∼ Bernoulli(p).

A useful property of geometric random variables is that they are memoryless:

Pr {X = K +M |X > k} = Pr {X = M} .

Definition 25 A Poisson random variable is distributed as

X ∼ Poisson(λ) =⇒ pX(x) =

{
λxe−λ

x!
x = 0, 1, · · ·

0 else.

E [X] = λ

Poisson random variables are good for modeling the number of arrivals in a given
interval. Suppose you take a given time interval and divide it into n chunks where
the probability of arrival in chunk i isXi ∼ Bernoulli(pn). Then the total number of
arrivals Xn =

∑n
i=1 Xi is distributed as a Binomial random variable with expecta-

tion npn = λ. As we increase n to infinity but keep λ fixed, we arrive at the poisson
distribution.

A useful fact about Poisson random variables is that if X ∼ Poisson(λ) and Y ∼
Poisson(µ) are independent, then X + Y ∼ Poisson(λ+ µ).

2.4 Common Continuous Distributions

Definition 26 A continuous random variable is uniformly distributed when the pdf of X
is constant over a range.

X ∼ Uniform(a, b) =⇒ fX(x) =

{
1
b−a a ≤ x ≤ b,

0 else.
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The CDF of a uniform distribution is given by

FX(x) =


0, x < a,
x−a
b−a , x ∈ [a, b)

1, x ≥ b.

Definition 27 A continuous random variable is exponentially distributed when its pdf is
given by

X ∼ Exp(λ) =⇒ fX(x) =

{
λe−λx x ≥ 0,

0 else.

Exponential random variables are the only continuous random variable to have
the memoryless property:

Pr {X > t+ s|X > s} = Pr {X > t} , t ≥ 0.

The CDF of the exponential distribution is given by

FX(x) = λ

∫ x

0

e−λudu = 1− e−λx

Definition 28 X is a Gaussian Random Variable with mean µ and variance σ2 (denoted
X ∼ N (µ, σ2)) if it has the PDF

fX(x) =
1√

2πσ2
e

−(x−µ)2

2σ2

The standard normal is X ∼ N (0, 1), and it has the CDF

Φ(x) =
1√
2π

∫ x

−∞
e

−u2
2 du

There is no closed from for Φ(x). It turns out that every normal random variable
can be transformed into the standard normal (i.e X−µ

σ
∼ N (0, 1)). Some facts about

Gaussian random variables are

1. If X ∼ N (µx, σ
2
x), Y ∼ N (µy, σ

2
y) are independent, then X + Y ∼ N (µx +

µy, σ
2
x + σ2

y).

2. If X, Y are independent and (X + Y ), (X − Y ) are independent, then both X
and Y are Gaussian with the same variance.
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2.4.1 Jointly Gaussian Random Variables

Jointly Gaussian Random Varables, also known as Gaussian Vectors, can be de-
fined in a variety of ways.

Definition 29 A Gaussian Random Vector X =
[
X1 · · · Xn

]T
with density on Rn,

Cov (X) = Σ,E [X] = µ is defined by the pdf

fX(x) =
1√

(2π)ndet(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ)

Definition 30 A joint gaussian random variable is an affine transformation of indepen-
dent and identically distributed standard normals.

X = µ+ AW

where A = Σ1/2 is a full-rank matrix andW is a vector of i.i.d standard normals.

Definition 31 A random variable is jointly gaussian if all 1D projections are Gaussian

aTX ∼ N (aTµ,aTΣa)

In addition to their many definitions, jointly gaussian random variables also have
interesting properties.

Theorem 11 IfX and Y are jointly gaussian random variables, then

X = µX + ΣXY Σ−1
Y (Y − µY ) + V where V ∼ N (0,ΣX − ΣXY Σ−1

Y ΣY X)

theorem 11 tells us that each entry in Gaussian Vector can be thought of as a
“noisy” version of the others.

2.5 Hilbert Spaces of Random Variables

One way to understand random variables is through linear algebra by thinking of
them as vectors in a vector space.
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Definition 32 An real inner product space V is composed of a vector space V over a real
scalar field equipped with an inner product 〈·, ·〉 that satisfies ∀u, v, w ∈ V , a, b ∈ R,

1. 〈u, v〉 = 〈v, u〉

2. 〈au+ bv, w〉 = a〈u,w〉+ b〈v, w〉

3. 〈u, u〉 ≥ 0 and < u, u >= 0⇔ u = 0

Inner products spaces are equipped with the norm ‖v‖ =
√
〈v, v〉.

Definition 33 A Hilbert Space is a real inner product space that is complete with respect
to its norm.

Loosely, completeness means that we can take limits of without exiting the space.
It turns out that random variables satisfy the definition of a Hilbert Space.

Theorem 12 Let (Ω,F , P ) be a probability space. The collection of random variables X
with E [X2] < ∞ on this probability space form a Hilbert Space with respect to the inner
product 〈X, Y 〉 = E [XY ].

Hilbert spaces are important because they provide a notion of geometry that is
compatible with our intuition as well as the geometry of Rn (which is a Hilbert
Space). One geometric idea is that of orthogonality. Two vectors are orthogonal if
〈X, Y 〉 = 0. Two random variables will be orthogonal if they are zero-mean and
uncorrelated. Using orthogonality, we can also define projections.

Theorem 13 (Hilbert Projection Theorem) Let H be a Hilbert Space and U ⊆ H be a
closed subspace. For each vector v ∈ H, argmin ‖u − v‖ has a unique solution (there is a
unique closest point u ∈ U to v). If u is the closest point to v, then ∀u ∈ U , 〈u− v, u′〉.

theorem 13 is what gives rise to important properties like the Pythogorean Theo-
rem for any Hilbert Space.

‖u‖2 + ‖u− v‖2 = ‖v‖where u = argmin ‖u− v‖.

Suppose we had to random variablesX and Y . What happens if we try and project
one onto the other?

Definition 34 The conditional expectation of X given Y is the bounded continuous func-
tion of Y such that X − E [X|Y ] is orthogonal to all other bounded continuous functions
φ(Y ).

∀φ, E [(X − E [X|Y ])φ(Y )] = 0.
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Thus, the conditional expectation is the function of Y that is closest to X . It’s
interpretation is that the expectation of X can change after observing some other
random variable Y . To find E [X|Y ], we can use the conditional distribution of X
and Y .

Theorem 14 The conditional expectation of a conditional distribution is given by

E [X|Y = y] =
∑
x∈X

xpX|Y (x|y), E [X|Y = y] =

∫ ∞
−∞

xfX|Y (x, y)dx

Notice that E [X|Y ] is a function of the random variable Y , meaning we can apply
theorem 6.

Theorem 15 (Tower Property) For all functions f ,

E [f(Y )X] = E [f(Y )E [X|Y ]]

Alternatively, we could apply lineary of expectation to definition 34 to arrive at the
same result. If we apply theorem 15 to the function f(Y ) = 1, then we can see that
E [E [X|Y ]] = E [X].

Just as expectation can change when we know additional information, so can vari-
ance.

Definition 35 Conditional Variance is the variance of X given the value of Y .

V ar (X|Y = y) = E
[
(X − E [X|Y = y])2|Y = y

]
= E

[
X2|Y = y

]
− E [X|Y = y]2

Conditional variance is a random variable just as expectation is.

Theorem 16 (Law of Total Variance)

V ar (X) = E [V ar (X|Y )] + V ar (E [X|Y ])

The second term in the law of total variance (V ar (E [X|Y ])) can be interpreted as
on average, how much uncertainty there is in X given we know Y .
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3 Concentration

In real life, for the most part, we can’t compute probabilities in closed form. In-
stead, we either bound them, or we want to show that P (A) ≈ 0 or P (A) ≈ 1.

3.1 Concentration Inequalities

Theorem 17 (Markov’s Inequality) For a non-negative random variable X ,

Pr {X ≥ t} ≤ E [X]

t
, t ≥ 0.

Theorem 18 (Chebyshev’s Inequality) If X is a random variable, then

Pr {|X − E [X] | ≥ t} ≤ V ar (X)

t2
.

Intuitively, theorem 18 gives gives a “better” bound than theorem 17 because it
incorporates the variance of the random variable. Using this idea, we can define an
even better bound that incorporates information from all moments of the random
variable.

Definition 36 (Chernoff Bound) For a random variable X and a ∈ R,

Pr {X ≥ a} ≤
E
[
etX
]

eta
= e−taMx(t).

After computing the Chernoff bound for a general t, we can then optimize over it
to compute the best bound possible.

3.2 Convergence

The idea of convergence brings the mathematical language of limits into proba-
bility. The fundamental question we want to answer is given random variables
X1, X2, · · · , what does it mean to compute

lim
n→∞

Xn.

This question is not as straightforward as it seems because random variables are
functions, and there are many ways to define the convergence of functions.
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Definition 37 A sequence of random variables converges almost surely to X if

P
(

lim
n→∞

Xn = X
)

= 1

One result of almost sure convergence deals with deviations around the mean of
many samples.

Theorem 19 (Strong Law of Large Numbers) IfX1, X2, · · · , Xn are independently and
identically distributed to X where E [X] < ∞, then 1

n

∑
iXi converges almost surely to

E [X].

The strong law tells us that for any observed realization, there is a point after which
there are no deviations from the mean.

Definition 38 A sequence of random variables converges in probability if

∀ε > 0, lim
n→∞

P (|Xn −X| > ε) = 0

Convergence in probability can help us formalize the intuition that we have which
says probability is the frequency with which an even happens over many trials of
an event.

Theorem 20 (Weak Law of Large Numbers) LetX1, X2, · · · , Xn be independently and
identically distributed according to X , and let Mn = 1

n

∑
Xi. Then for ε > 0,

lim
n→∞

Pr {|Mn − E [X] | > ε} = 0.

It tells us that the probability of a deviation of ε from the true mean will go to 0
in the limit, but we can still observe these deviations. Nevertheless, the weak law
helps us formalize our intuition about probability. If X1, X2, · · · , Xn are indepen-
dently and identically distributed according toX , then we can define the empirical
frequency

Fn =

∑
1Xi∈B

n
=⇒ E [Fn] = P (X ∈ B).

By theorem 20,
lim
n→∞

Pr {|Fn − P (X ∈ B)| > ε} = 0,

meaning over many trials, the empirical frequency is equal to the probility of the
event, matching intuition.
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Definition 39 A sequence of random variables converges in distribution if

lim
n→∞

FXn(x) = Fx(x).

An example of convergence in distribution is the central limit theorem.

Theorem 21 (Central Limit Theorem) IfX1, X2, · · · are independently and identically
distributed according to X with V ar (X) = σ2 and E [X] = µ, then

lim
n→∞

P

(∑n
i=1Xi − nµ
σ
√
n

≤ x

)
= Φ(x)

In other words, a sequence of random variables converges in distribution to a nor-
mal distribution with variance σ2 and mean µ.

These notions of convergence are not identical, and they do not necessarily imply
each other. It is true that almost sure convergence implies convergence in proba-
bility, and convergence in probability implies convergence in distribution, but the
implication is only one way.

Once we know how a random variable converges, we can then also find how func-
tions of that random variable converge.

Theorem 22 (Continuous Mapping Theorem) If f is a continuous function, then if
Xn converges to X , then f(Xn) converges to f(X). The convergence can be almost surely,
in probability, or in distribution.

4 Information Theory

Information Theory is a field which addresses two questions

1. Source Coding: How many bits do I need to losslessly represent an observa-
tion.

2. Channel Coding: How reliably and quickly can I communicate a message
over a noisy channel.

4.1 Quantifying Information

Intuitively, for a PMF of a disrete random variable, the surprise associated with a
particular realization is − log pX(x) since less probable realizations are more sur-
prising. With this intuition, we can try and quantify the “expected surprise” of a
distribution.
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Definition 40 For a Discrete Random Variable X ∼ pX , the Entropy of X is given by

H(x) = E [− log2 pX(x)] = −
∑
x∈X

pX(x) log2 pX(x).

Alternative interpretations of entropy are the average uncertainty and how ran-
domX is. Just like probabilites, we can define both joint and conditional entropies.

Definition 41 For Discrete Random Variables X and Y , the joint entropy is given by

H(X, Y ) = E [− log2 pXY (x, y)] = −
∑

x,y∈X×Y

pXY (x, y) log2 pXY (x, y).

Definition 42 For Discrete Random Variable X and Y , the conditional entropy is given
by

H(Y |X) = E
[
− log2 pY |X(y|x)

]
=
∑
x∈X

pX(x)H(Y |X = x).

Conditional entropy has a natural interpretation which is that it tells us how sur-
prised we are to see Y = y given that we knowX = x. IfX and Y are independent,
then H(Y ) = H(Y |X) because realizing X gives no additional information about
Y .

Theorem 23 (Chain Rule of Entropy)

H(X, Y ) = H(X) +H(X|Y ).

In addition to knowing how much our surprise changes for a random variable
when we observe a different random variable, we can also quantify how much
additional information observing a random variable gives us about another.

Definition 43 For random variables X and Y , the mutual information is given by

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).
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4.2 Source Coding

Source coding deals with finding the minimal number of bits required to represent
data. This is essentially the idea of lossless compression. In this case, our message
is the sequence of realizations of independently and identically distributed ran-
dom variables (Xi)

n
i=1 ∼ pX . The probability of observing a particular sequence is

then

P (x1, x2, · · · , xn) =
n∏
i=1

pX(xi).

Theorem 24 (Asymptotic Equipartition Property) If we have a sequence of indepen-
dently and identically distributed random variables (Xi)

n
i=1 ∼ pX , then− 1

n
logP (x1, x2, · · · , xn)

converges to H(X) in probability.

theorem 24 tells us that with overwhelming probability, we will observe a sequence
that is assigned probability 2−nH(X). Using this idea, we can define a subset of
possible observed sequences that in the limit, our observed sequence must belong
to with overwhelming probability.

Definition 44 For a fixed ε > 0, for each n ≥ 1, the typical set is given by

A(n)
ε =

{
(x1, x2, · · · , xn) : 2−n(H(X)+ε) ≤ P (x1, x2, · · · , xn) ≤ 2−n(H(X)−ε)} .

Two important properties of the typical set are that

1. limn→∞ P
(

(x1, x2, . . . , xn) ∈ A(n)
ε

)
= 1

2. |A(n)
ε | ≤ 2n(H(X)+ε)

The typical set gives us an easy way to do source coding. If I have N total objects,
then I only need logN bits to represent each object, so I can define a simple protocol
which is

1. If (xi)
n
i=1 ∈ A

(n)
ε
2

, then describe them using the log |A(n)
ε
2
| ≤ n

(
H(X) + ε

2

)
bits

2. If (xi)
n
i=1 6∈ A

(n)
ε
2

, then describe them naiively with n log |X | bits.

This makes the average number of bits required to describe a message

E [# of Bits] ≤ n
(
H(X) +

ε

2

)
P
(

(xi)
n
i=1 ∈ A

(n)
ε
2

)
+ n log |X |P

(
(xi)

n
i=1 ∈ A

(n)
ε
2

)
≤ n(H(X) +

ε

2
) + n

ε

2
≤ n(H(X) + ε)

This is the first half of a central result of source coding.
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Theorem 25 (Source Coding Theorem) If (Xi)
n
i=1 ∼ pX are a sequence of indepen-

dently and identically distributed random varibles, then for any ε > 0 and n sufficiently
large, we can represent (Xi)

n
i=1 using fewer than n(H(X) + ε) bits. Conversely, we can

not losslessly represent (Xi)
n
i=1 using fewer than nH(X) bits.

This lends a new interpretation of the entropy H(X): it is the average number of
bits required to represent X .

4.3 Channel Coding

Whereas source coding deals with encoding information, channel coding deals
with transmitting it over a noisy channel. In general, we have a message M , and
encoder, a channel, and a decoder as in fig. 1.

Encoder Noisy Channel Decoder
M X(n)(M) Y (n) M̂(Y (n))

Figure 1: Channel Coding

Each channel can be described by a conditional probability distribution pY |X(y|x)
for each time the channel is used.

Definition 45 For a channel described by pY |X , the capacity is given by

C = max
pX

I(X;Y ).

In words, the capacity describes the maximum mutual information between the
channel input and output.

Definition 46 Suppose we use the channel n times to send a message that takes on average
H(m) bits to encode, then the rate of the channel is

R =
H(M)

n

Theorem 26 (Channel Coding Theorem) For a channel decsribed by pY |X and ε > 0
and R < C, for all n sufficiently large, there exists a rate R communication scheme that
achieves a probability of error less than ε. If R > C, then the probability of error converges
to 1 for any communication scheme.
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5 Random Processes

Definition 47 A random/stochastic process is a sequence of random variables (Xn)n≥0.

The random variables in a stochastic process do not have to be independently and
identically distributed. In fact, if they are not, then we can get additional modeling
power.

Definition 48 A random process (Xn)n∈N is stationary if for all k, n > 0 and all events
A1, · · · , An, then

Pr {X1 ∈ A1, · · · , Xn ∈ An} = Pr {Xk+1 ∈ A1, · · · , Ak+n ∈ An}

Stationarity is often a good assumption that can simplify systems which have been
running for a long period of time.

5.1 Discrete Time Markov Chains

Definition 49 (Xn)n≥0 is a Markov Chain if each random variable Xi takes values in a
discrete set S (the state space), and,

∀n ≥ 0, i, j ∈ S, Pr {Xn+1 = j|Xn = i, · · · , X0 = x0} = Pr {Xn+1 = i|Xn = j}

In words, a Markov Chain is a sequence of random variables satisfying the Markov
Property where probability of being in a state during the next time step only de-
pends on the current state.

Definition 50 A temporally homogenous Markov Chain is one where the transition prob-
abilities Pr {Xn+1 = j|Xn = i} = pij for all i, j ∈ S and n ≥ 0.

Temporally Homogenous Markov Chains don’t change their transition probabili-
ties over time. Since the pij are conditional probabilities, they must satisfy

1. ∀i, j ∈ S, pij ≥ 0

2. ∀i ∈ S,
∑

j∈S pij = 1

Definition 51 The transition matrix of a Markov Chain is a matrix P where the ijth entry
Pij = pij for all i, j ∈ S.
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The transition matrix encodes the one-step transition probabilities of the Markov
Chain.

Theorem 27 (Chapman-Kolmogorov Equation) The n-step transition probabilities (i.e
starting in i and ending in j n steps later) of the Markov Chain are given by p(n)

ij = P n
ij .

One useful thing we can comptue with Markov Chain is when the chain first enters
a particular state.

Definition 52 For a A ⊂ S, the hitting time of A is given by

TA = min
n
{n ≥ 0 : Xn ∈ A}

Computing the expected hitting time is an example of a broader type of Markov
Chain Analysis called First Step Analysis. In First Step Analysis, we set up a
system of equations that relies on the Markov property to generate a system of
equations that only look at the first transition in the chain. For expected hitting
time, these look like

1. For i 6∈ A, E [TA|X0 = i] = 1 +
∑

j pijE [TA|X0 = j]

2. For i ∈ A, E [TA|X0 = i] = 0

5.1.1 Properties of Markov Chains

Definition 53 If ∃n ≥ 1 such that p(n)
ij 6= 0, then j is accessible from i, and we write

i→ j.

Definition 54 States i and j communicate with each other when i → j and j → i. We
write this as i↔ j.

By convention, we say that i↔ i. It turns out that↔ is an equivalence relation on
the state space S. An equivalence relation means that

1. ∀i ∈ S, i↔ i

2. ∀i, j ∈ S, i↔ j ⇔ j ↔ i

3. ∀i, j, k ∈ S, i↔ k, k ↔ j ⇒ i↔ j

This means that↔ partitions the state-space S into equivalence classes (i.e classes
of communicating states).
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Definition 55 A Markov Chain is irreducible if S is the only class.

Definition 56 An irreducible Markov Chain is reversible if and only if there exists a prob-
ability vector π that satisfies the Detailed Balance Equations:

∀i, j ∈ S, πjpij = πipji

Markov Chains which satisfy the detailed balance equations are called reversible
because ifX0 ∼ π, then the random vectors (X0, X1, · · · , Xn) and (Xn, Xn−1, · · · , X0)
are equal in distribution.

Theorem 28 If the graph of a Markov Chain (transform the state transition diagram by
making edges undirected, removing self-loops, and removing multiple edges) is a tree, then
the Markov Chain is reversible.

5.1.2 Class Properties

A class property is a property where if one element of a class has the property,
all elements of the class have the property. Markov Chains have several of these
properties which allow us to classify states.

Definition 57 A state i ∈ S is recurrent if given that X0 = i, the process revisits state i
with probability 1.

Definition 58 A state is i ∈ S is transient if it is not recurrent.

Recurrence means that we will visit a state infinitely often in the future if we start
in that state, while transience means we will only visit the state finitely many times.
Recurrence and transience can be easily identified from the transition diagram.

1. Any finite communicating class which has no edges leaving the class is re-
current

2. If a state has an edge leading outside its communicating class, then it is tran-
sient

3. If a state is recurrent, then any state it can reach is recurrent

We can further break recurrence down if we modify the definition of hitting time
to be Ti = minn{n ≥ 1 : Xn = i} (the first time the chain enters state i).

Definition 59 State i is positive recurrent if it is recurrent and E [Ti|X0 = i] is finite.
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Definition 60 State i is null recurrent if it is recurrent and E [Ti|X0 = i] is infinite.

Positive recurrence means we visit a recurrent state so frequently that we spend a
positive fraction of time in that state. Null recurrencce means we visit a recurrent
state so infrequently (but still infinitely many times) that we spend virtually no
time in that state.

Theorem 29 Every irreducible finite state Markov Chain is positive recurrent.

Definition 61 For a state i ∈ S, we define the period of the state to be

period(i) = GCD{n ≥ 1 : p
(n)
ii > 0}.

If we start in state i, then revists to i only occur at integer multiples of the period.

Definition 62 An irreducible markov chain is aperiodic if any state has period 1.

All of the above properties are class properties.

5.1.3 Long-Term Behavior of Markov Chains

Since the pij completely characterize the Markov Chain, we can also describe what
happens to the chain in the limit.

Definition 63 A probability distribution π over the states is a stationary distribution if
π = πP

It is called a stationary distribution because the distribution over states is invariant
with time. A Markov Chain is only at stationarity if and only if it has been started
from the stationary distribution. The relationship π = πP can be expanded for
the jth element to show that any stationary distribution must satisfy the Global
Balance Equations:

πj =
∑
i

pijπi.

Note that if a distribution π satisfies the detailed balance equations from defini-
tion 56, then π also satisfies definition 63.

Both the global balance equations and detailed balance equations can be conceptu-
alized as statements of flow. If each πj indicates how much mass is placed on state
j, then the global balance equations tell us the mass leaving the node (going to
each neighbor i in proportion to pij) is equal to the mass entering the node (which
must sum to πj since it is a stationary distribution. Rather than looking at the flow
of the whole chain, the detailed balance equations look at the flow between two
states. The mass i gives to j is equal to the mass j gives to i.
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Theorem 30 If an irreducible Markov Chain is at stationarity, then the flow-in equals
flow-out relationship holds for any cut of the Markov Chain where a cut is a partition of
the chain into two disjoint subsets.

theorem 30 is one useful result can help solve for stationary distributions.

Theorem 31 (Big Theorem for Markov Chains) Let (Xn)n≥0 be an irreducible Markov
Chain. Then one of the following is true.

1. Either all states are transient, or all states are null recurrent, and no stationary distri-
bution exists, and limn→∞ p

(n)
ij = 0.

2. All states are positive recurrent and the stationary distribution exists, is unique, and
satisfies

πj = lim
n→∞

1

n

n∑
k=0

P
(k)
ij =

1

E [Tj|X0 = j]
.

If the Markov Chain is aperiodic, then limn→∞ p
(n)
ij = πj

One consequence of theorem 31 is that it means the stationary distribution π of a
reversible Markov Chain is unique. This makes solving the detailed balance equa-
tions a good technique of solving for the stationary distribution. If a stationary
distribution exists, then we can also say when the chain will converge to the sta-
tionary distribution.

Theorem 32 (Convergence Theorem) If a chain is irreducible, positive, recurrent, and
aperiodic with stationary distribution π, then the distribution at time n πn → π

5.2 Continuous Time Markov Chains

Definition 64 A process (Xt)t≥0 taking values in a countable state space S is a temporally
homogenous continuous time markov chain if it satisfies the Markov Property

Pr {Xt+τ = j|Xt = i,Xs = is, 0 ≤ s ≤ t} = Pr {Xt+τ = j|Xt = i} = Pr {Xτ = j|X0 = i}

To characterize how a CTMC functions, we need to define some additional quan-
tities.

1. qi is the transition rate of state i

2. pij is the transition probability bewteen states i and j
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Every time a CTMC enters a state i, it will hold in that state for Exp(qi) time before
transitioning to the next state j with probability pij .

Definition 65 The jump chain is a DTMC which describes the transition probabilities
between states in the CTMC

Note that the jump chain cannot have self-loops (pii = 0) because otherwise the
amount of time spent in state i would not be exponentially distributed. An alter-
native interpretation of a CTMC is

1. Define jump rates qij = qipij

2. On entering state i, jump to j? = argminj Tj where Tj ∼ Exp(qij) for all j 6= i
and are independent from each other.

Essentially, every time we enter a state, we set an alarm clock for all other states,
and then jump to the state whose alarm clock goes off first. This equivalent inter-
pretation allows us to summarize a CTMC using the rate matrix.

Qij =

{
−qi if i = j

qij if i 6= j

Following from the first interprentation, all entries of Q are non-negative, and the
rows must sum to 0. One useful quantity which we can define is how long it takes
to come back to a particular state.

Definition 66 The time to first re-entry of state j is

Tj = min{t ≥ 0 : Xt = j and Xs 6= j for some s < t}

Since a CTMC is essentially a DTMC where we hold in each state for an exponential
amount of time, we can apply First Step Analysis in essentially the same way that
we do for DTMCs. In fact, hitting probabilities will look exactly the same since
we can just use the jump chain to comute the transition probabilities. The only
differences will arise when we consider the time dependent quantities. For hitting
times (how long it takes to enter a state from A ⊆ S),

1. If i ∈ A,E [TA|X0 = i] = 0

2. If i 6∈ A,E [TA|X0 = i] = 1
qi

+
∑

j∈S pijE [TA|X0 = j]
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5.2.1 Class Properties

Just like in DTMCs, we can classify states in the CTMC.

Definition 67 States i and j communicate with eachc other if i and j communicate in the
jump chain.

Definition 68 State j is transient if given X0 = j, the process enters j finitely many
times with probability 1. Otherwise, it is recurrent.

Definition 69 A state j is positive recurrent if its time to first re-entry is finite, and null
recurrent otherwise.

5.2.2 Long Term Behavior of CTMCs

CTMCs also have stationary distributions.

Definition 70 A probability vector π is a stationary ditribution for a CTMC with rate
matrix Q if

πQ = 0⇔ πjqj =
∑
i 6=j

πiqij.

The stationary distribution of the CTMC is also related to the jump chain, but we
need to normalize for the hold times.

Theorem 33 If π is a stationary distribution for a CTMC, then the stationary distribution
of the jump chain is given by

π̃i =
πiqi∑
j πjqj

To describe how a CTMC behaves over time, first define p(t)
ij = Pr {Xt = j|X0 = i}

and mj = E [Tj|X0 = j].

Theorem 34 (Big Theorem for CTMCs) For an irreducible CTMC, exactly one of the
following is true.

1. All states are transient or null recurrent, no stationary distribution exists, and limt→∞ p
(t)
ij =

0

2. All states are positive recurrent, a unique stationary distribution exists, and the station-
ary distribution satisfies

πj =
1

mjqj
= lim

t→∞
p

(t)
ij
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5.2.3 Uniformization

Let P (t) denote the matrix of transition probabiltiies at time t > 0. By the Markov
property, we know that P (s+t) = P (s)P (t). For h ≈ 0, P (h) ≈ I + hQ + o(h). This
approximation allows us to compute the derivative of P (t).

Theorem 35 (Forward Kolmogorov Equation)

∂

∂t
P (t) = lim

h→0

P (t+h) − P (t)

h
= P (t)Q

theorem 35 tells us that the transition probabilties P (t) = etQ for all t ≥ 0. This is
why Q is sometimes called the generator matrix: it generates the transition prob-
abilities. However, matrix exponentials are difficult to compute. Instead, we can
turn to Uniformization, which allows us to estimate P (t) by simulating it through
a DTMC.

Definition 71 Given a CTMC where ∃M such that qi ≤ M for all i, j ∈ S. Fix a
γ ≥M , and the uniformized chain will be a DTMC with transition probabilities pij =

qij
γ

and pii = 1− qi
γ

.

Pu = I +
1

γ
Q.

It turns out that

P n
u =

(
I +

1

γ
Q

)n
≈ e

n
γ
Q

when 1
γ

is small. This means that we can approximate the transition probabilties
of the CTMC using the uniformized chain. Observe that uniformization also helps
in finding the stationary distribution since the stationary distribution of the uni-
formized chain is identical to the original chain.

πPu = π +
1

γ
πQ = π ⇔ πQ = 0.

5.2.4 Poisson Processes

Definition 72 A counting process (Nt)t≥0 is a non-decreasing, continuous time, integer
valued random process which has right continuous sample paths.

There are two important metrics which describe counting processes.
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Definition 73 The ith arrival time Ti is given by

Ti = min
t
{t ≥ 0 : Nt ≥ i}

Definition 74 The ith inter-arrival time Si is given by

Si = Ti − Ti−1, i > 0

Definition 75 A rate λ Poisson Process is a counting process with independently and
identically distributed inter-arrival times Si ∼ Exp(λ).

The name Poisson comes from the distribution of each varible in the process.

Theorem 36 If (Nt)t≥0 is a rate λ Poisson Process, then for each t ≥ 0, Nt ∼ Poisson(λt)

A Poisson Process is a special case of a CTMC where the transition rates qi = λ
and the transition probabilties pij are 1 if j = i + 1 and 0 otherwise. Since the
inter-arrival times are memoryless and i.i.d, Poisson Processes have many useful
properties.

Theorem 37 If (Nt)t≥0 is a rate λ Poisson Process, then (Nt+s − Ns)t≥0 is also a rate λ
Poisson Process for all s ≥ 0 and is independent of the original process.

Theorem 38 For t0 < t1 < . . . < tk, then the increments of a rate λ Poisson Pro-
cess (Nt1 − Nt0), (Nt2 − Nt1), . . . , (Ntk − Ntk−1

) are independent and Nti − Nti−1
∼

Poisson(λ(ti − ti−1))

Poisson Processes are the only counting processes with these particular properties.

It turns out that Poisson Processes can be connected with the Order Statistics of
Uniform Random Variables.

Theorem 39 (Conditional Distribution of Arrivals) Conditioned onNt = n, the ran-
dom vector T1, T2, · · · , Tn has the same distribution as the order statistics of n random
variables U ∼ Uniform(0, t).

What theorem 39 says is that given n arrivals up to time t occur, the distribution of
arrival times is equivalent to taking n i.i.d uniform random variables and sorting
them.

Two other useful properties of Poisson Processes involve combining and separat-
ing them.
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Theorem 40 (Poisson Merging) IfN1,t andN2,t are independent Poisson Processes with
rates λ1 and λ2, then N1,t +N2,t is a Poisson Process with rate λ1 + λ2.

Theorem 41 (Poisson Splitting) Let p(x) be a probability distribution and Nt be a rate
λ Poisson process. If each arrival is marked with the label i independently with probability
p(x = i), then Ni,t, the process counting the number of arrivals labeled i is an independent
Poisson Process with rate λpi.

6 Random Graphs

A random graph is one which is generated through some amount of randomness.

Definition 76 An Erdos-Renyi random graph G(n, p) is an undirected graph on n ≥ 1
vertices where each edge exists independently with probability p.

With random graphs, we often ask what happens to particular properties as n→∞
and p scales with some relationship to n. In particular, we want that property
to hold with high probability (i.e, as n → ∞, the probabilty that G(n, p) has the
property approaches 1).

Theorem 42 Every monotone graph property (adding more edges doesn’t delete the prop-
erty) has a sharp threshold tn where if p � tn, then G(n, p) has p with high probability
and does not have p with high probability if tn � G(n, p).

One example of a threshold is the connectivity threshold.

Theorem 43 (Erdos-Renyi Connectivity Theorem) Fix λ > 0 and let pn = λ logn
n

. If
λ > 1, then P (G(n, pn) is connected) with probability approaching 1, and if λ < 1, then
P (G(n, pn) is disconnected) with probability approaching 1

7 Statistical Inference

Suppose we have a variable X (may or may not be a random variable) that rep-
resents the state of nature. We observe a variable Y which is obtained by some
model of the world PY |X .

Model (PY |X)X Y

Figure 2: Inference Setup
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Suppose we know that X ∼ π where π is a probability distribution. If we observe
Y = y, then the a posteriori estimate of X is given by Bayes Rule

Pr {X = x|Y = y} =
PY |X(y|x)π(x)∑
x̃ PY |X(y|x̃)π(x̃)

∝ PY |X(y|x)π(x).

Since the estimate is only dependent on the model and the prior, we don’t actually
need to compute the probabilities to figure out the most likely X .

Definition 77 The Maximum A Posteriori (MAP) estimate is given by

X̂MAP (y) = argmax
x

PY |X(y|x)π(x)

If we have no prior information on X , then we can assume π is uniform, reducing
definition 77 to only optimize over the model.

Definition 78 The Maximum Likelihood (ML) estimate is given by

X̂ML(y) = argmax
x

PY |X(y|x)

7.1 Binary Hypothesis Testing

Definition 79 A Binary Hypothesis Test is a type of statistical inference where the un-
known variable X ∈ {0, 1}.

Since there are only two possible values of X in a binary test, there are two “hy-
potheses” that we have, and we want to accept the more likely one.

Definition 80 The Null Hypothesis H0 says that Y ∼ PY |X=0

Definition 81 The Alternate Hypothesis H1 says that Y ∼ PY |X=1

With two possible hypotheses, there are two kinds of errors we can make.

Definition 82 A Type I error (false positive) is when we incorrectly reject the null hy-
pothesis. The Type I error probability is then

Pr
{
X̂(Y ) = 1|X = 0

}
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Definition 83 A Type II error (false negative) is when we incorrectly accept the null hy-
pothesis. The Type II error probability is then

Pr
{
X̂(Y ) = 0|X = 1

}

Our goal is to create a decision rule X̂ : Y → {0, 1} that we can use to predict
X . Based on what the decision rule is used for, there will be requirements on how
large the probability of Type I and Type II errors can be. We can formulate the
search for a hypothesis test as an optimization. For some β ∈ [0, 1], we want to
find

X̂β(Y ) = argmin Pr
{
X̂(Y ) = 0|X = 1

}
: Pr

{
X̂(Y ) = 1|X = 0

}
≤ β. (1)

Intuitively, our test should depend on pY |X(y|1) and pY |X(y|0) since these quantities
give us how likely we are to get our observations if we knew the ground truth. We
can define a ratio that formally compares these two quantities.

Definition 84 The likelihood ratio is given by

L(y) =
pY |X(y|1)

pY |X(y|0)

Notice that we can write MLE as a threshold on the likelihood ratio since if L(y) ≥
1, then we say X = 1, and vice versa. However, there is no particular reason that 1
must always be the number at which we threshold our likelihood ratio, and so we
can generalize this idea to form different forms of tests.

Definition 85 For some threshold c and randomization probability γ, a threshold test is
of the form

X̂(y) =


1 if L(y) > c

0 if L(y) < c

Bernoulli(γ) if L(y) = c.

MAP fits into the framework of a threshold test since we can write

X̂MAP =

{
1 if L(y) ≥ π0

π1

0 if L(y) < π0
π1

It turns out that threshold tests are optimal with respect to solving eq. (1).
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Theorem 44 (Neyman Pearson Lemma) Given β ∈ [0, 1], the optimal decision rule to

X̂β(Y ) = argmin Pr
{
X̂(Y ) = 0|X = 1

}
: Pr

{
X̂(Y ) = 1|X = 0

}
≤ β

is a threshold test.

When L(y) is monotonically increasing or decreasing, we can make the decision
rule even simpler since it can be turned into a threshold on y. For example, if L(y)
is monotonically inreasing, then an optimal decision rule might be

X̂(y) =


1 if y > c

0 if y < c

Bernoulli(γ) if y = c.

8 Estimation

Whereas hypothesis testing is about discriminating between two or more hypothe-
ses, estimation is about guessing the numerical value of or ground truth of a ran-
dom variable.

Model
(pY |X)

Estimation
Procedure

X Y X̂(Y )

Figure 3: Estimation Setup

In order to measure the quality of our estimation, we need a metric to measure
error. One commonly used error is the mean squared error

E
[
(X − X̂(Y ))2

]
.

Theorem 45 The minimum mean square estimate (MMSE) of a random variable X is
given by the conditional expectation.

X̂(Y ) = E [X|Y ] = argmin
X̂

E
[
(X − X̂(Y ))2

]
.

This essentially follows from the definition of conditional expectation since it is
orthogonal to all other functions of Y , and so by the Hilbert Projection Theorem,
it must be the projection of X onto the space of all functions of Y . There are two
problems with using MMSE all the time.
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1. We often don’t know pY |X explicitly and only have a good model for it.

2. Even if we knew the model pY |X , conditional expectations are difficult to
compute.

8.1 Linear Estimation

Since finding the MMSE is difficult, we can restrict ourselves to funtions of a par-
ticular type.

Definition 86 The Linear Least Squares Estimator (LLSE) L [X|Y ] is the projection of a
vector of random variablesX onto the subspace of linear functions of observations Yi, U =
{a+BY } where Y is a vector of observations.

By the orthogonality principle,

1. E [(X − L [X|Y ])1] = 0 =⇒ E [L [X|Y ]] = E [X]

2. E [(X − L [X|Y ])Yi] = 0

From here, we can derive a closed form expression for the LLSE. LetµY = E [Y ] ,µX =
E [X] ,ΣY = E

[
(Y − µY )(Y − µY )T

]
,ΣXY = E

[
(X − µX)(Y − µY )T

]
. By sub-

stituting L [X|Y ] = a + BY into the equations we found from the orthogonality
principle,

a+BµY = µX

a(µY )i +BE [Y Yi] = E [XYi] =⇒ a(µY )i +B(ΣY )i +B(µY )iµY = (ΣXY )i + (µY )iµx

=⇒ aµY
T +BΣY +BµY µY

T = ΣXY + µXµY
T

Solving this system yields

B = ΣXY Σ−1
Y a = µX − ΣXY Σ−1

Y µY .

Theorem 46 The Linear Least Squares Estimator for vector of random variablesX given
a vector of random variables Y is

L [X|Y ] = µX + ΣXY Σ−1
Y (Y − µY )

If X and Y are both a single random variable, this reduces to

L [X|Y ] = µX +
Cov (X, Y )

V ar (Y )
(Y − µY )
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Since LLSE is essentially projection onto a Linear Subspace, if we have an orthog-
onal basis for the subspace, then we can do the projection onto the subspace one
component at a time. The Gram-Schmidt Process turns vectors Y1, · · · , Yn into an
orthonormal set Ỹ1, · · · , Ỹn. If we define Y (n) = (Y1, · · · , Yn),

1. Ỹ1 = Y1
‖Y1‖

2. Ỹi+1 = Yi+1 −
∑i

k=1〈Yi+1, Ỹk〉Ỹk = Yi+1 − L
[
Yi+1|Y (i)

]
Definition 87 The linear innovation sequence of random variables Y1, · · · , Yn is the or-
thogonal set Ỹ1, · · · , Ỹn produced by Gram Schmidt

Since Ỹn is orthogonal to L
[
Yn|Ỹ (n−1)

]
, they belong to different parts of the sub-

space formed by Y1, · · · , Yn.

Theorem 47
L
[
X|Y (n)

]
= L

[
X|Ỹn

]
+ L

[
X|Ỹ (n−1)

]

Note that in general, the LLSE is not the same as the MMSE. However, if X and Y
are Jointly Gaussian, then the LLSE does, in fact, equal the MMSE.

8.2 Kalman Filtering

Definition 88 A system evolves according to a state space model if the state Xn at time
n and observations Y n at time n are related by

∀n ≥ 0, Xn+1 = AXn + V n ∀n ≥ 1, Y n = CXn +W n

where Vn and Wn are noise terms.

State space models are flexible and describe a variety of processes. Suppose we
want to linearly estimateXn from the Y n we have seen so far.

Theorem 48 The linear estimate X̂n|n = L [Xn|Y 1, · · · ,Y n] can be computed recur-
sively via the Kalman Filter.

1. X̂0|0 = 0,Σ0|0 = Cov (X0).

2. For n ≥ 1, update

X̂n|n = AX̂n−1|n−1+KnỸ n Ỹ n = Yn−CX̂n|n−1 Σn|n−1 = AΣn−1|n−1A
T +ΣV

Kn = Σn|n−1C
T (CΣn|n−1C

T + ΣW )−1 Σn|n = (I −KnC)Σn|n−1

Kalman filtering is a simple algorithm which lets us do online, optimal estimation.
Variants of it can do things such as prediction or smoothing.
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