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1 Introduction to Control

The general goal of control is to get some physical system to respond to a reference
input in the way we would like.

Definition 1 The plant is the physical system which we would like to control.

In general, there are two different types of control.

Definition 2 Open-Loop control is where we pass a reference directly to the actuator to
control the plant (see fig. 1).

K Actuator Plant
r(t) u(t)

output

d1(t) d2(t)

Figure 1: Open-Loop Control

Open-Loop control is generally difficult because the disturbances make it difficult
to copy the reference exactly.

Definition 3 Closed loop control is using the output of our system and comparing it to
the reference in order to generate the control signal (see fig. 2).

Controller Actuator Plant

Sensor

r(t) u(t)e(t)

−

d1(t) d2(t)

Figure 2: Closed-Loop Control

Notice how the output signal is subtracted from a reference signal, and we use the
difference (a.k.a the error) to determine what input we pass into the plant.

Definition 4 The control law K(e) is a function of error applied by the controller to de-
termine the inputs to the plant.
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2 Modeling Systems

Systems are most easily modeled using systems of linear constant coefficient dif-
ferential equations. They can be represented either as a set of state-space equations
or as a transfer function in the Laplace domain.

2.1 Electrical and Mechanical Systems

2.1.1 Eletrical Systems

In electrical systems, there are three basic components: resistors, capacitors, and
inductors. See table 1 for their Laplace domain relationships. At an electrical node,∑
V = 0 by Kirchoff’s Voltage Law, and at an electrical junction,

∑
Iin =

∑
Iout by

Kirchoff’s Current Law.

2.1.2 Mechanical Systems

In mechanical systems, there are also three basic components: dampers, springs,
and masses. There are also rotational counterparts. See table 1 for their Laplace
domain relationships. At a massless node,

∑
F = 0 by Newton’s 2nd law. Be-

cause we consider dampers and springs are massless, the force at two ends of a
damper or spring must be equal. In rotational systems, we can also have a gear
train. Rotational impedances are reflected through gear trains by multiplying by(

N2
dest

N2
source

)
.

2.1.3 Electro-Mechanical Equivalence

It turns out that electrical and mechanical systems are analogous to each other.
In other words, given an electrical system, we can convert it into a mechanical
system and vice versa. Capacitors act like springs as energy storage, resistors act
like dampers which dissipate energy, and inductors act like inertial masses which
resist movement. These are clear from their force/voltage differential equations
(in the Laplace domain) in table 1. Under these analogies, forces are like voltages,
currents are like velocities, and charge is like position.

2.2 Linearization

Because non-linear systems often have dynamics which are complicated to ana-
lyze, a standard trick to make them simpler is to linearize them.
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Component Translational
Components

Rotational
Components

Electrical
Components

Mass/Inductor Ms2X(s) Js2Θ(s) LsI(s)

Resistor/Damper BsX(s) BsΘ(s) RI(s)

Spring/Capacitor KX(s) KΘ(s) 1
Cs
I(s)

Gears/Transformer - T2(s)
T1(s)

= Θ1(s)
Θ2(s)

= N2

N1

Np
Ns

= Vp(s)

Vs(s)
= Is(s)

Ip(s)

Table 1: Electro-mechanical equations and their analogies.

Definition 5 Linearization is when a nonlinear system f(x) is approximated by the first
two terms of its Taylor series about a particular operating point.

f(x0 + δx) ≈ f(x0) +∇x|x0+δxδx

Using definition 5, we can see that around our operating point, we have

f(x)− f(x0) = δf(x) ≈ ∇x|x0+δxδx (1)

eq. (1) will hold so long as δx is small enough to be within the linear regime (i.e
where the Taylor Series expansion is a good approximation). If f is a multi-variable
equation, then eq. (1) becomes

δf(x,u, . . . ) ≈ ∇x|x0+δxδx +∇u|u0+δuδu + · · ·

2.3 State-Space Equations

Definition 6 System variables are variables which depend on either the input or the sys-
tem’s internal state.

Definition 7 The state variables of a system are the smallest set of linear independent
system variables that can uniquely determine all the other system variables for all t > 0.

One can think of the state variables x as capturing the internal dynamics of the
system. The dynamics are described by matrices A (the state-evolution matrix)
and B (the input matrix)

dx

dt
= Ax +Bu

where u is the input to the system. Sometimes the states are not directly observ-
able, but instead the sensor in fig. 2 only provides a linear combination of the states
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determined by the output matrixC and the feedforward matrixD. Together, eq. (2)
and eq. (3) are the state-space equations of the system.

dx

dt
= Ax +Bu (2)

y = Cx +Du (3)

We can easily go from State-Space Equations to a transfer function via the Unilat-
eral Laplace transform. After taking the Laplace Transform of both sides of eqs. (2)
and (3),

sX(s)− x(0−) = AX(s) +BU(s)

=⇒ X(s) = (sI − A)−1BU(s) + x(0−)

Y (s) = CX(s) +DU(s)

=⇒ Y (s) = (C (sI − A)−1B +D)U (s) + C(sI − A)−1x(0−).

If the system is Single-Input, Single-Output (SISO) and the initial condition is
x(0−) = 0, then

H(s) =
Y (s)

U(s)
= C(sI − A)−1B +D. (4)

eq. (4) makes it very clear that the poles of the system are the same as the eigenval-
ues of the A matrix.

2.3.1 Phase Variable Form

We can also derive state space equations from their transfer functions. First, we
assume that the transfer function comes from the LCCDE

N∑
k=0

ak
dky

dtk
=

N∑
k=0

bk
dku

dtk
,

meaning our transfer function will be of the form

H(s) =
Y (s)

U(s)
=

∑N
k=0 bks

k∑N
k=0 aks

k
=

∑N
k=0

bk
aN
sk

sN +
∑N−1

k=0
ak
aN
sk
.

It is possible that ∃M < N such that ∀k ≥M, bk = 0. In other words, the numerator
can have fewer terms than the denominator. We now introduce an intermediary
variable X so

Y (s)

U(s)
=
Y (s)

X(s)

X(s)

U(s)
.

Using this intermediary variable, we can now let

Y (s) =
N∑
k=0

bk
aN

skX(s) X(s) =
U(s)

sN +
∑N−1

k=0
ak
aN
sk
.
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Converting this back to the time-domain,

y(t) =
N∑
k=0

bk
aN

dkx

dtk
dNx

dtN
= u(t)−

N−1∑
k=0

ak
aN

dkx

dtk
.

We can now choose our state-variables to be the derivatives x,
dx

dt
, · · · , dN−1x

dtN−1
, giv-

ing us the state-evolution equation

d

dt



x
dx

dt
...

dN−2x

dtN−2

dN−1x

dtN−1


=



0 1 0 0 . . .

0 0 1 0 . . .

0 0
. . . . . . . . .

0 0 . . . 0 1

− a0
aN
− a1
aN

. . . −aN−2

aN
−aN−1

aN





x
dx

dt
...

dN−2x

dtN−2

dN−1x

dtN−1


+



0

0
...

0

1


u(t). (5)

Applying the state-variables to y(t),

y(t) =
bN
aN

(
u(t)−

N−1∑
k=0

ak
aN

dkx

dtk

)
+

N−1∑
k=0

bk
aN

dkx

dtk

y(t) =
bN
aN

u(t) +
N−1∑
k=0

(
bk
aN
− bNak

a2
N

)
dkx

dtk

y(t) =
1

aN

[
b0 − bNa0

aN
b1 − bNa1

aN
. . . bN−1 − bNaN−1

aN

]
x +

bN
aN

u(t). (6)

Together, eqs. (5) and (6) are known as Phase Variable Form. Notice that the char-
acteristic polynomial of the A matrix when it is in phase variable form is

∆(s) = sn +
N−1∑
i=0

ai
aN

si.

When we do control in section 6, this makes it easier to place the system poles
where we want them to be.

2.3.2 Time Domain Solution

For transfer functions, the time domain solution for a particular input is given by
L−1 {H(s)U(s)}. How do we do the same for state-space equations? eq. (2) is a
inhomogenous, first-order vector ordinary differential equation. If it was a scalar
homogenous ODE, then we know the solution would be x(t) = x(0)eat, so for our
vector case, let us first define

eAt =
∞∑
k=0

1

k!
Ak
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using the Taylor Series expansion. With this definition, we can solve eq. (2) using
integrating factors. If we let e−At be our integrating factor, then multiplying it to
both sides of eq. (2) gives

e−At
dx

dt
= e−AtAx + e−AtBu.

Notice that
d

dt

[
e−Atx

]
= e−At

dx

dt
− Ae−Atx.

Combining these two equations, we see that

d

dt

[
e−Atx

]
= e−AtBu.

Integrating both sides from 0 to t,

e−Atx(t)− x(0) =

∫ t

0

e−AτBu(τ)dτ

∴ x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (7)

Notice that eq. (7) is broken into two pieces.

Definition 8 The zero-input response is how the system will behave when no input is
supplied.

x(t) = eAtx(0)

Definition 9 The zero-state response is how the system response to an input when its
initial state is x(0) = 0. It is the convolution of the input with eAtBu(t)u(t) where u(t)
is the unit step.

x(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ

2.3.3 Controllability

Definition 10 A system is controllable if for any initial state x0, we can reach a new state
xf in finite time with no constraints on the input u.

Let us assume that we have a controllable system and we want to reach the state 
from x0, and we reach it at time tf . Then using eq. (7),

−x0 =

∫ tf

0

e−AτBu(τ)dτ.
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By the Cayley-Hamilton Theorem (appendix A),

−x0 =
n−1∑
j=0

AjB

∫ tf

0

αj(τ)u(τ)dτ

∴
[
B AB A2B . . . An−1B

]

c0

c1

...

cn−1


where ci =

∫ tf

0

αj(τ)u(τ)dτ.

Definition 11 The controllability matrix is

C =
[
B AB A2B . . . An−1B

]
.

Notice that if C is invertible, then we can find the c which will recover −x0, but if
it is not invertible, then we may not be able to do this.

Theorem 1 If C is invertible, then the system is controllable.

2.3.4 Observability

Definition 12 A system is observable if for any initial state x0, we can determine x0 from
u(t) and y(t) over a finite time interval.

Definition 13 The observability matrix is

O =



C

CA

...

CAn−1


.

A theorem analogous to theorem 1 exists for observability.

Theorem 2 If O is invertible, then the system is observable.
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2.4 Time Delays

Sometimes systems have a time-delay in them. This is equivalent to placing a
system before the plant with impulse response δ(t−T ) since x(t)∗δ(t−T ) = x(t−T ).
In the Laplace domain, this is the same as the transfer function e−sT as shown in
fig. 3.

e−sT G(s)
r(t) y(t)

−

Figure 3: System with time delay

3 System Performance

Definition 14 The step response of a system is how a system H(s) responds to a step
input.

y(t) = L−1

{
H(s)

s

}

3.1 First Order Systems

Definition 15 A first order system is one with the transfer function of the form

H(s) =
s+ α

s+ β
.

After applying partial fraction decomposition to them, their step response is of the
form

Au(t) +Be−βtu(t).

Thus, the larger β is (i.e the deeper in the left half plane it is), the faster the system
will “settle”.

3.2 Second Order Systems

Definition 16 Second order systems are those with the transfer function in the form

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

.
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ωn is known as the natural frequency, and ζ is known as the damping factor.

Notice that the poles of the second order system are

s =
−2ζωn ±

√
4ζ2ω2

n − 4ω2
n

2
= −ζωn ± ωn

√
ζ2 − 1.

There are four cases of interest based on ζ .

1. Undamped

When ζ = 0, the poles are s = ±ωnj. Because they are purely imaginary, the
step response will be purely oscillatory.

Y (s) =
1

s

ω2
n

s2 + ω2
n

↔ y(t) = u(t)− cos(ωnt)u(t)

2. Underdamped

When ζ ∈ (0, 1), the poles are s = −ζωn± jωn
√

1− ζ2. They are complex and
in the left-half plane, so the step response will be a exponentially decaying
sinusoid. We define the damped frequency ωd = ωn

√
1− ζ2 so that the poles

become s = −ζωn ± ωdj. Notice that ωd < ωn. If we compute the time-
response of the system,

y(t) =

[
1− e−ζωnt√

1− ζ2
cos

(
ωdt− arctan

(
ζ√

1− ζ2

))]
u(t)

3. Critically Damped

When ζ = 1, both poles are at s = −ωn. The poles are both real, so the
time-response will respond without any overshoot.

4. Overdamped

When ζ > 1, the poles are −ζωn ± ωn
√
ζ2 − 1. Both of these will be real, so

the time-response will look similar to a first-order system where it is slow
and primarily governed by the slowest pole.

3.2.1 The Underdamped Case

If we analyze the underdamped case further, we can first look at its derivative.

sY (s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

ωd

ωd
(s+ ζωn)2 + ω2

d

∴
dy

dt
=
ω2
n

ωd
e−ζωnt sin(ωdt)u(t) (8)
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Definition 17 The Time to Peak (Tp) of a system is how long it takes to reach is largest
value in the step response.

Using eq. (8), we see that the derivative is first equal to 0 when t = π
ωd

.

∴ Tp =
π

ωd

Definition 18 The Percent Overshoot (%O.S) of a system is by how much it will over-
shoot the step response.

The percent overshoot occurs at t = π
ωd

, so

%O.S = e
−ζωn π

ωd = e
−ζπ√
1−ζ2 .

Definition 19 The Settling Time (Ts) of a system is how long it takes for the system to
start oscillating within 2% of its final value.

|y(Ts)− 1| < 0.02 =⇒ e−ζωnTs√
1− ζ2

= 0.02

∴ Ts = − 1

ζωn
ln(0.02

√
1− ζ2)

Since our poles are complex, we can represent them in their polar form.

r = ω2
d + ζ2 + ω2

n = ω2
n(1− ζ2) + ζ2ω2

n = ω2
n

cos(π − θ) =
−ζωn
ωn

= −ζ

What this tells us is that if we search along the vector at angle π − θ, we get a
constant ζ .

3.2.2 Additional Poles and Zeros of a Second Order System

Suppose we added an additional pole to the second order system so its transfer
function was instead

H(s) =
bc

(s+ c)(s2 + 2as+ b)
.
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Then its step response will be

Y (s) =
1

s
+

D

s+ c
+

Bs+ C

s2 + as+ b

B =
c(a− c)
c2 + b− ca

C =
c(a2 − ac− b)
c2 + b− ca

D =
−b

c2 − ac+ b
.

Notice that
lim
c→∞

D = 0 lim
c→∞

B = −1 lim
c→∞

C = −a.

In other words, as the additional pole moves to infinity, the system acts more and
more like a second-order. As a rule of thumb, if Re{c} ≥ 5Re{a}, then the system
will approximate a second order system. Because of this property, we can often
decompose complex systems into a series of first and second order systems.

If we instead add an additional zero to the second order system so its transfer
function looks like

H(s) =
s+ a

s2 + 2ζωn + ω2
n

and its step response will look like

sY (s) + aY (s).

Thus if a is small, then the effect of the zero is similar to introducing a derivative
into the system, whereas if a is large, then the impact of the zero is primarily to
scale the step response. One useful property about zeros is that if a zero occurs
close enough to a pole, then they will “cancel” each other out and that pole will
have a much smaller effect on the step response.

3.3 Stability

Recall eq. (7) which told us the time-domain solution to state-space equations was

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ.

Definition 20 A system is bounded-input, bounded output(BIBO) stable if ∃Ku, Kx <
∞ such that |u(t)| < Ku =⇒ |x(t)| < Kx.

Following from definition 20 and eq. (7), this means that

lim
t→∞

x(t) = 0.

If instead limt→∞ x(t) =∞, then the system is unstable.
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Theorem 3 If all poles are in the left half plane and the number of zeros is less than or
equal to the number of poles, then the system is BIBO stable.

Definition 21 A system is called marginally stable if the zero-input response does not
converge to 0.

Theorem 4 A system is marginally stable if there is exactly one pole at s = 0 or a pair of
poles at s = ±jω0.

In all other cases, the system will be unstable.

3.4 Steady State Error

Consider the unity feedback loop depicted in fig. 4 where we put a system G(s) in
unity feedback to control it.

G(s)
r(t) y(t)e(t)

−

Figure 4: Unity Feedback Loop

We want to understand what its steady state error will be in response to different
inputs.

Theorem 5 The final value theorem says that for a function whose unilateral laplace
transform has all poles in the left half plane,

lim
t→∞

x(t) = lim
s→0

sX(s).

Using this fact, we see that for the unity feedback system,

E(s) =
R(s)

1 +G(s)
.

Using these, we can define the static error constants.

14



Definition 22 The position constant determines how well a system can track a unit step.

Kp = lim
s→0

G(s) (9)

lim
t→∞

e(t) = lim
s→0

s
1

s

1

1 +G(s)
=

1

1 +Kp

Definition 23 The velocity constant determines how well a system can track a ramp.

Kv = lim
s→0

sG(s) (10)

lim
t→∞

e(t) = lim
s→0

s
1

s2

1

1 +G(s)
=

1

Kv

Definition 24 The acceleration constant determines how well a system can track a parabola.

Ka = lim
s→0

s2G(s) (11)

lim
t→∞

e(t) = lim
s→0

s
1

s3

1

1 +G(s)
=

1

Ka

Notice that large static error constants mean a smaller error. Another observation
we can make is that if a system has n poles at s = 0, it can perfectly track an input
whose laplace transform is 1

sn−k
for k ∈ [0, n− 1]. We give n a formal name.

Definition 25 The system type is the number of poles at 0.

This also brings another observation.

Definition 26 The internal model principle is that if the system in the feedback loop has a
model of the input we want to track, then it can track it exactly.

If instead we have a state-space system, then assuming the system is stable,

lim
t→∞

dx

dt
= 0 =⇒ lim

t→∞
x = xss.

Applying this to the state space equations for a step input,

dx

dt
= 0 = Axss +B · I =⇒ xss = −A−1B (12)

Looking at the error between the reference and the output in the 1D input case,

e(t) = r(t)− y(t) = 1− Cxss = 1 + CA−1B.
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3.5 Margins

ejωt G(s) |G(jω)|ejωt+∠G(jω)

Figure 5: Frequency Response

If we take a complex exponential and pass it into a causal LTI system with impulse
response g(t), then

y(t) = ejωt ∗ g(t) =

∫ ∞
−∞

g(τ)ejω(t−τ)dτ = ejωt
∫ ∞

0

g(τ)e−jωτdτ.

This shows us that ejωt is an eigenfunction of the system.

Definition 27 The frequency response of the system determines how it scales pure fre-
quencies. It is equivalent to the Laplace transform evaluated on the imaginary axis.

G(jω) =

∫ ∞
0

g(τ)e−jωτdτ (13)

Suppose we put a linear systemG(s) in negative feedback. We know that if ∠G(jω) =
(2k + 1)π for some k ∈ Z, then the output of the plant will be −|G(jω)|ejωt. If
|G(jω)| ≥ 1, then this will feed back into the error term where it will be multi-
plied by |G(jω)| repeatedly, and this will cause the system to be unstable because
|G(jω)| ≥ 1 and thus will not decay.

Definition 28 The gain margin Gm is the change in the open loop gain required to make
the closed loop system unstable.

Definition 29 The phase margin φm is the change in the open loop phase required to make
the closed loop system unstable.

We can imagine the gain and phase margin like placing a “virtual box” before the
plant as shown in fig. 6.

Gme
−jφm G(s)

r(t) y(t)

−

Figure 6: The Gain and Phase Margin virtual system
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The characteristic polynomial of the closed loop transfer function is

1 +Gme
−jφmG(s) = 0.

At the gain margin frequency ωgm,

|Gm||G(jωgm)| = 1 =⇒ |Gm| =
1

|G(jωgm)|
.

where the gain margin frequency is ∠G(jωm) = (2k + 1)π for k ∈ Z. Likewise, at
the phase margin frequency ωpm,

1 +Gme
−jωmG(jωpm) = 0 =⇒ −φm + ∠G(jωpm) = (2k + 1)π.

where the phase margin frequency is |G(jωpm)| = 1.

Notice that if there is a time delay of T in the system, the phase margin will remain
unchanged since the magnitude response will be the same, but the gain margin
will change because the new phase will be

∠G(jω)− ωT.

4 Design Tools

4.1 Root Locus

K G(s)
r(t) y(t)

H(s)

−

Figure 7: Feedback Controller

Suppose we choose to control the plant by scaling our error signal by K and then
put the controller on the feedback path like in fig. 7. It would be helpful for us
to understand how the closed loop poles of the feedback system change as K is
varied over the range [0,∞). First, suppose

G(s) =
NG

DG

H(s) =
NH

DH

.

Then the transfer function of the overall system is

Y (s)

R(s)
=

kG(s)

1 + kG(s)H(s)
=

KNGDH

DGDH +KNGNH

.

17



The closed loop poles are the roots of the denominator polynomial (called the char-
acteristic polynomial).

∆(s) = DGDH +KNGNH = 1 +K
NGNH

DGDH

= 0 (14)

Clearly, no matter what K is, the poles must satisfy two criteria.∣∣∣∣kNGNH

DGDH

∣∣∣∣ = 1 ∠K
NGNH

DGDH

= (2r + 1)π, r ∈ Z (15)

Definition 30 The root locus is the set of all s ∈ C such that ∃K where ∆(s) = 0.

All points on the root locus must satisfy eq. (15).

4.1.1 Root Locus Rules

First, notice that the roots of ∆(s) are the closed loop poles of the system.

Theorem 6 The number of branches in the root locus is equal to the number of closed loop
poles where a branch is the path traveled by a single pole as K is varied.

Next, because we are dealing with real systems, complex poles must have a corre-
sponding conjugate pole.

Theorem 7 The root locus is symmetric about the real axis.

Going back to eq. (15), we can alternatively express the angle criteria as

∠K

∏m
i=1(s− zi)∏n
i=1(s− pi)

=
m∑
i=1

∠(s− zi)−
n∑
i=1

∠(s− pi)

where zi are open loop zeros and pi are open loop poles. If we restrict ourselves to
the real axis, then given a closed loop pole s, each zi > s will contribute −180°and
each pi > s will contribute 180°while the zi, pi < s will contribute 0°.

Theorem 8 The real axis segments of the root locus are to the left of an odd number of
open loop poles and zeros.

When K is small, then the poles look like the open loop poles. As K grows very
large, then the poles look like the open loop zeros.

Theorem 9 The root locus begins at the open loop poles and ends at the open loop zeros

18



If there are more poles (n) then zeros (m), then not all of the poles will end up at a
zero in the limit. This means that n−m poles must branch off to infinity.

lim
|s|→∞

kH(s)G(s) ≈ lim
|s|→∞

k
sm

sn
= (2l + 1)π =⇒ sn−m = rejθ(n−m) =⇒ θ =

(2l + 1)π

n−m

Theorem 10 In the limit, poles will asymptotically approach

θ =
−(2l + 1)π

n−m
,

and the real axis intercept of these asymptotes is

σ =

∑m
i=1 pi −

∑n
i=1 zi

n−m
.

If there is a gap between real-axis segments, in order to end at an open loop zero,
poles must sometimes break away from the real axis and then re-enter.

Theorem 11 The break-in and break-away points satisfy the equation
n∑
i=1

1

σ + pi
=

m∑
i=1

1

σ + zi
.

Since the angles can travel asymptotically, they sometimes cross the imaginary
axis.

Theorem 12 The root locus intersects the imaginary axis at points where
m∑
i=1

∠(jω + zi)−
n∑
i=1

∠(jω + pi) = (2l + 1)π.

Similarly, if the poles begin at complex locations, then we can find their angle of
departure.

Theorem 13 Poles beginning at complex locations will depart at an angle θ where
m∑
i=1

(p+ zi)−
n∑
i=1

(p+ pi) = (2l + 1)π

Finally, since |KG(s)H(s)| = 1, we can determine K if we know a particular pole
location.

Theorem 14 Given a pole location p,

K =

∣∣∣∣ 1

G(p)H(p)

∣∣∣∣ .
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4.1.2 Generalized Root Locus

Because the Root Locus rules are derived from the characteristic polynomial ∆(s)
of the closed-loop system, they can be used not just to find how the closed loop
poles vary with a gain, but also to find how the closed loop poles vary with an
open loop pole. Suppose that G(s) = NG

(s+k)
∏
i(s+pi)

and H(s) = 1. Then

∆(s) = (s+ k)
∏
i

(s+ pi) +NG = 1 + k

∏
i(s+ pi)

NG + s
∏

i(s+ pi)
= 0

Thus if we apply the root locus rules to the open loop system

Y (s) =

∏
i(s+ pi)

NG + s
∏

i(s+ pi)

then we can capture the behavior of the closed loop poles of the original system as
we vary the location of the open loop pole we control.

4.2 Bode Plots

Definition 31 A Bode plot is a plot of the magnitude and phase of the frequency response
with the magnitude on a log-log scale and the phase on a semi-log scale.

If we write the frequency response in polar form,

G(jω) = K
(jω)Nz0

(jω)Np0

∏n
i=0 (1 + jω

ωzi
)∏m

k=0 (1 + jω
ωpk

)
= Kej

π
2

(Nz0−Np0)

∏n
i=0 rzi∏m
k=0 rpk

ej(
∑n
i=0 zi−

∑m
k=0 pk).

Each r is the magnitude of a factor 1 + jω
ωn

where ωn is either a zero or a pole, zi, pk
are the phases of each factor, and Nz0, Np0 are the number of zeros and poles at 0.
By writing G(ω) this way, it is clear that

|G(ω)| = K

∏n
i=0 rzi∏m
k=0 rpk

.

If we take the convert this to decibels, we get

20 log(|G(ω)|) = 20 log(K) + 20
n∑
i=0

log(rzi)− 20
m∑
k=0

log(rpk)

Likewise, the exponential form of G(ω) tells us that

∠G(ω) =
π

2
(Nz0 −Np0) + (

n∑
i=0

zi −
m∑
k=0

pk).

Each pk and zi are of the form 1 + jω
ωn

. If ω > 10ωn, then pk, zi ≈ ωn. Likewise, if
ω < ωn

10
, pk, zi ≈ 1. This means we can approximate bode plots using piece-wise

linear segments using the following rules.
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1. Each zero ωz contributes 20 dB/decade to magnitude starting at ωz.

2. Each pole ωp contributes −20 dB/decade to magnitude starting at ωp.

3. Each zero ωz contributes 45 °/decade to phase starting at ωz
10

and ending at
10ωz.

4. Each pole ωp contributes −45 °/decade to phase starting at ωp
10

and ending at
10ωp.

One useful way to use bode plots is to approximate the gain and phase margin
because they can easily be seen visually from the plots themselves.

4.3 Nyquist Criteria

G(s)
r(t) y(t)

H(s)

−

Figure 8: Feedback Controller

Consider the basic feedback system in fig. 8 and suppose that

G(s) =
NG

DG

H(s) =
NH

DH

.

Then the feedback transfer function is

Y (s)

R(s)
=

G

1 +G(s)H(s)
=

NGDH

DGDH +NGNH

.

If we focus specifically on the poles of the system, then we see

1 +GH = 1 +
NGNH

DGDH

=
NGNH +DGDH

DGDH

From here, we can see that the poles of 1 + GH are the poles of the open loop
system whereas the zeros of 1 +GH are the poles of the closed loop system.

Definition 32 A contour is a closed loop set of points in the complex plane.

Definition 33 A mapping is a function that takes a point in the complex plane and trans-
forms it into another point in the complex plane.
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Definition 34 The Nyquist Criterion says that if N is the number of counter-clockwise
encirclements of zero of a contour mapped by a transfer function F (s), P is the number of
poles in the contour, and Z is the number of zeros in the contour, then

N = P − Z. (16)

Thus, given an open loop transfer function GH , we can determine its stability.
We already know P from the poles of the open loop system, and we can find N
by defining a contour which encapsulates the right half plane and use eq. (16) to
find Z. However, remember that we need to find the RHP poles of 1 + GH . This
shifts our mapping to the right by 1, so we can instead just let N be the number of
encirclements of −1. Once we have Z, we know how many RHP poles the closed
loop transfer function will have because they are the same as the RHP zeros of the
1+GH . We can extend the Nyquist Criterion to finding a range of gains that would
make the open-loop system kG(s)H(s) stable by looking for the encirclements of
−1
K

.

The contour which is easiest to find the mapping for is the one which starts at
the origin, travels up the imaginary axis, encapsulates the right half plane, and
then travels back up the imaginary axis back to the origin in a counter-clockwise
fasion. This is the easiest because while the contour is on the imaginary axis, the
mapping is just the frequency response of the system, and we can use the Bode
plot of the system in order to draw the contour because each point on the mapping
is a complex vector, and the bode plot can give us both the magnitude and angle
of that vector.

5 Cascade Compensation

One easy way to control the plant is to cascade a controller before the plant like in
fig. 9.

H(s) G(s)
r(t) y(t)

−

Figure 9: Cascade Feedback Compensation

We can design the controller H(s) to alter the behavior of our system.
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5.1 Proportional Integral (PI) Control

Definition 35 A proportional integral controller applies an input which is a linear com-
bination of the scaled and integrated error signal.

H(s) = Kp +
Ki

s
= Kp

s+ Ki
Kp

s

What a PI Controller effectively does is place a new pole at s = 0 and a new zero
at s = −Ki

Kp
. Because of the pole at zero, adding a PI controller enables the system

to track a step input perfectly. However, because the pole is placed at zero, it can
slow down the time response unless the zero can cancel it out.

5.2 Proportional Derivative (PD) Control

Definition 36 A proportional derivative controller applies an input which is a linear com-
bination of the scaled and differentiated error signal.

H(s) = Kp +Kds = Kd

(
s+

Kp

Kd

)

Adding a PD controller introduces a new zero into the system. By carefully choos-
ing where we place the zero, we can shape the time-response of the system. If we
want our dominant second order poles to be at a particular location, then we can
use the angle rule to find the location of the zero s = −Kp

Kd
. Since differentiation is

an unstable operations, sometimes we instead also place a pole very far in the left
half plane, and the transfer function becomes

H(s) = Kd

s+ Kp
Kd

s+ p
.

5.3 Proportional Integral Derivative (PID) Control

Definition 37 A proportional integral derivative controller applies an input which is a
linear combination of the scaled, differentated, and integrated error signals.

H(s) = Kp +Kds+
Ki

s
= Kd

s2 + Kp
Kd
s+ Ki

Kd

s

A PID controller is used where we need to both eliminate steady-state error and
shape the time response. We need to choose two different zero locations and set
the total gain of the system.
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ω

|H(jω)|

pc zc

0 dB

ω

∠H(jω)

0°

Figure 10: Lag Network

5.4 Lag Compensation

Definition 38 A lag compensator is a controller with the transfer function

H(s) = K
s+ zc
s+ pc

, pc < zc.

The purpose of a lag network is to reduce steady state error by increasing the gains
at low frequency and maintaining the gain at higher frequencies. This keeps the
phase margin the same. We can achieve this because of the frequency response of
the lag network (shown by its bode plot in fig. 10).

We can place the pole and zero carefully to control how much the phase decreases
by. The design procedure is as follows:

1. Set gain K to the value that satisfies the SSE specification and plot the Bode
diagram at that gain.

2. Find ωPM such that φM is 5°to 12°larger than required.

3. Let the high frequency asymptote be −20 logKPMdB at ωPM where KPM =
|G(jωPM)|.

4. Choose the upper break frequency to be ωPM
10

.

5. Set the low frequency asymptote to be 0 dB and locate the lower break fre-
quency.

6. Reset the system gain K to compensate for attenuation.

5.5 Lead Controller

Definition 39 A Lead Controller is a compensator with the transfer function

H(s) = k
s+ zc
s+ pc

=
k

β

s+ 1
T

s+ 1
βT

zc > pc, β < 1.
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ω

|H(jω)|

zc pc

0 dB

ω

∠H(jω)

0°

Figure 11: Lead Network

A lead controller is used to change the phase margin and alter the time perfomance
metrics of the step response. It has a peak phase φmax which is related to the pole
and zero by

ωmax =
1

T
√
β

, φmax = sin−1 1− β
1 + β

, |Gc(jωmax)| =
1√
β
.

Its frequency response looks like in fig. 11.

1. Set gain K of the uncompensated system to a value satisfying SSE require-
ment.

2. Plot bode diagram for system with gain K and determine φM .

3. Find φM needed to meet requirements and evaluate additional phase contri-
bution from compenstor.

4. Determine β.

5. Determine |Gc(jωmax)|.

6. Determine ωPM where |G(jω)| = −20 log |Gc(jωmax)|.

7. Find the break frequencies.

8. Reset the gain.

9. Simulate and tweak.
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6 State-Space Control

The basic idea behind state space control is to use the state of the system in order
to set the input. Namely, if we are given

dx

dt
= Ax +Bu,

then we can let u = r − Kx. If we do this, then the equivalent state-evolution
equation becomes

dx

dt
= (A−BK)x +Br.

Notice that if our system is in phase variable form, then the controlled state-evolution
equation is

dx

dt
=



0 1 0 0 · · ·

0 0 1 0 · · ·

0 0
. . . . . . . . .

0 0 · · · 0 1

−a0 − k0 −a1 − k1 · · · −an−2 − kn−2 −an−1kn−1


x +Br.

This makes it very convenient to place our poles where we want since the last row
of the A matrix is also the coefficients of the characteristic polynomial.

6.1 Design by Transformation

Suppose we have a system

dz

dt
= Az +Bu y = Cz

which is not in phase variable form. To place it into phase variable form, first
assume that z = Px for some invertible matrix P .

P
dx

dt
= APx +Bu =⇒ dx

dt
+ P−1Bu y = CPx.

Since our transformation is invertible, the controllability of the system is unchanged,
so

Cx =
[
P−1B P−1AB · · ·P−1An−1B

]
= P−1Cz.

Assuming the system is controllable, P = CzC−1
x . Now we can apply state feedback

to the phase variable system.

dx

dt
= P−1APx+P−1B(−Kx+r) = P−1(AP −BK)P−1z+Br =⇒ Kz = KzP

−1.
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6.2 Observers/State Estimators

When doing state feedback, we often don’t have access to the states themselves
because we only have access to y. In that case, we can’t use u = r −Kx because
we don’t know x. One idea is to keep track of an estimated state x̂ and estimated
output ŷ which follow the same system dynamics as the actual state and the actual
output and receive the same input. If A is a stable matrix, then limt→∞ e

Atx0 =
0 where x0 is the initial state of the system. This means that even if there is a
discrepancy between the estimated state and the true state in the beginning, the
estimate will match the true state after some time.

Suppose now that we want to control the error between the true state and the
estimated state e = x− x̂, so we add a gain L to the error in the outputs y − ŷ.

dx̂

dt
= Ax̂ +Bu + L(y − ŷ) = Ax̂ +Bu + LC(x− x̂)

de

dt
=

d(x− x̂)

dt
= Ax +Bu− [Ax̂ +Bu + LC(x− x̂)]

∴
de

dt
= (A− LC)e

Thus we can design L to get quick error convergence. Notice that if our system is
not observable, then we will not be able to place the poles of the observer system
where we want them to be.

Now, if we we do state feedback using the estimated state, then

dx

dt
= Ax +B(r −Kx̂) = (A−BK)x +B(r −Ke).

Looking at the combined system,dx

dt
de

dt

 =

A−BK −BK

0 A− LC

x
e

+

B
0

 r.

Notice that the poles of this system are just the poles of the original system and the
poles of the observer system, so we can choose K and L independently.

6.3 Integrators in State Feedback

Suppose we wanted to get rid of the steady state error using state-space control.
We would do this using an integrator over the error in the observed outputs.

xN =

∫ t

0

(~r − ~y)dt.
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dx

dt
= Ax +Bu C

B
∫

C

A

L

−K

−

r(t) u(t)
y

dx̂

dt x̂ ŷ

Figure 12: State Observer System

If we treat this as a new state, its evolution will be

dxN
dt

= r − Cx.

If our new control law is u = −Kx + KexN , then our new state-space equations
are  dx

dt
dxN
dt

 =

 A 0

−C 0

 x

xN

+

B
0

+

0
I

 r.

When we apply our feedback rule, we get dx

dt
dxN
dt

 =

A−BK BKe

−C 0

 x

xN

+

0
I

 r.

6.4 Linear Quadratic Regulator

Suppose we want to control our system to send the state to 0 over an infinite time
horizon using the input −Kx. We want to do this by optimizing a cost function
that penalizes control effort and the state error. In particular, we want to minimize
the cost function

J =

∫ ∞
0

yTQy + uTRudt.
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where R and Q are positve-semi-definite matrices (typically diagonal) and deter-
mine how much we penalize the error and the control effort.

7 Digital Control Systems

ADC CPU DAC/PWM Plant

SensorADC

r(t) r[k] u[k] y(t)

y[k]

T T

T

Figure 13: Digital Control System

When using a digital system to control a CT system, the inputs u(t) must be held
constant for a particular amount of time. This is equivalent to using a zero-order
hold for sampling period T . At an multiple of the sampling period kT

x(kT ) = eAkTx(0) +

∫ kT

0

eA(kT−τ)Bu(τ)dτ.

If we look only at the output at times which are multiples of kT (i.e what our CPU
would see if we sampled the output), then we can find a relationship between the
current sample and the next sample.

−eAtx(kT ) + x((k + 1)T ) = −eA(k+1)τx(0)−
∫ kT

0

eA((k+1)T−τ)Bu(τ)dτ

+ eA(k+1)τx(0) +

∫ (k+1)T

0

eA((k+1)T−τ)Bu(τ)dτ

=

∫ (k+1)T

kT

eA((k+1)T−τ)Bu(τ)dτ = eA(k+1)TBu(kT )

∫ (k+1)T

kT

e−Aτdτ

= Bu(kT )

∫ T

0

eAλdλ (λ = (k + 1)T − τ)

∴ x((k + 1)T ) = eAtx(kT ) + u(kT )

∫ T

0

BeAλdλ.

Looking only at the samples, the discrete system is

x[k + 1] = Gx[k] +Hu[k] G = eAT H =

∫ T

0

eAλBdλ. (17)
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If we solve this recursive equation for a particular x[0], then we get

x[n] = Gnx[0] +
n−1∑
i=0

GiHu[i]. (18)

Notice that the stability of this system depends on the eigenvales of G and that
|λG| < 1 in order for it to be stable. If we want to find a transfer function of the
system, then we can use the unilateral Z-transform.

zX(z)− zx[0] = GX(z) +HU(z)

X(Z) = (zI −G)−1(HU(z) + x[0]z) (19)

Notice that the poles of the system are still the eigenvalues of the G matrix. Thus
any techniques for placing the poles of the G matrix are still valid, except we need
to make sure the poles stay within the unit circle for stability instead of the left half
plane. If we want to figure out how a system will respond to an input, we can use
the final value theorem like we do in CT.

Theorem 15 For a transfer function G(z) which has all poles in the unit circle, the final
value of g[n] is given by

lim
n=→∞

g[n] = lim
z→1

(z − 1)G(z).

The other primary difference from CT is that in DT, a pole which is closer to the
origin means a faster transient response.

A Cayley-Hamilton

Theorem 16 Every square matrixA satisfies its own characteristic polynomial if there are
no repeated eigenvalues.

∆(A) = 0

∆(λ) = |λI − A| = λn +
n−1∑
i=0

ciλ
i

In the case where A is diagonalizable (i.e A = PΛP−1),

∆(A) = P

[
Λn +

n−1∑
i=0

ciΛ
i

]
P−1.
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Λn +
∑n−1

i=0 ciΛ
i is itself a diagonal matrix where the jth entry on the diagonal is

λnj +
n−1∑
i=0

ciλj = 0

since λj is a root of the characteristic polynomial. Thus ∆(A) = P · 0 ·P−1 = 0, and

− An =
n−1∑
i=0

ciA
i. (20)

This also gives us a new way to find eAt because by its Taylor series expansion,

eAt =
∞∑
k=0

1

k!
Ak.

By eq. (20), all Ak = AnAk−n for k > n can be expressed in terms of the lower
powers Ai for i ∈ [0, n).

Theorem 17

eAt =
n−1∑
i=0

αi(t)A
i

for some αi which are solutions to the equations

eλjt =
n−1∑
i=0

αi(t)λ
i
j.
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